Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.11.20187369

ABSTRACT

The pandemic spread of the potentially life-threatening disease COVID-19 requires a thorough understanding of the longitudinal dynamics of host responses. Temporal resolution of cellular features associated with a severe disease trajectory will be a pre-requisite for finding disease outcome predictors. Here, we performed a longitudinal multi-omics study using a two-centre German cohort of 13 patients (from Cologne and Kiel, cohort 1). We analysed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. The results from single-cell and bulk transcriptome analyses were validated in two independent cohorts of COVID-19 patients from Bonn (18 patients, cohort 2) and Nijmegen (40 patients, cohort 3), respectively. We observed an increase of proliferating, activated plasmablasts in severe COVID-19, and show a distinct expression pattern related to a hyperactive cellular metabolism of these cells. We further identified a notable expansion of type I IFN-activated circulating megakaryocytes and their progenitors, indicative of emergency megakaryopoiesis, which was confirmed in cohort 2. These changes were accompanied by increased erythropoiesis in the critical phase of the disease with features of hypoxic signalling. Finally, projecting megakaryocyte- and erythroid cell-derived co-expression modules to longitudinal blood transcriptome samples from cohort 3 confirmed an association of early temporal changes of these features with fatal COVID-19 disease outcome. In sum, our longitudinal multi-omics study demonstrates distinct cellular and gene expression dynamics upon SARS-CoV-2 infection, which point to metabolic shifts of circulating immune cells, and reveals changes in megakaryocytes and increased erythropoiesis as important outcome indicators in severe COVID-19 patients.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.22.111187

ABSTRACT

The SARS-CoV-2 novel coronavirus global pandemic (COVID-19) has led to millions of cases and hundreds of thousands of deaths around the globe. While the elderly appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of the developing mouse lung with temporally-resolved RNA-in-situ hybridization (ISH) in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression was increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases revealed SARS-CoV-2 RNA was detected most frequently in ciliated and secretory cells in the airway epithelium and AT1 cells in the peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in the lung epithelium, and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL